

- 5) A car is traveling on a straight road. For $0 \le t \le 24$ seconds, the car's velocity v(t), in meters per second is modeled by the piecewise-linear function defined by the graph above.
 - a) Find $\int_{0}^{24} v(t)dt$. Using correct units, explain the meaning of $\int_{0}^{24} v(t)dt$.
 - b) For each of v'(4) and v'(20), find the value or explain why it does not exist. Indicate units of measure.
 - c) Let a(t) be the car's acceleration at time *t*, in meters per second. For 0 < t < 24, write a piecewise-defined function for a(t).
 - d) Find the average rate of change of v over the interval $8 \le t \le 20$. Does the Mean Value Theorem guarantee a value of c for $8 \le c \le 20$ such that v'(c) is equal to this average rate of change? Why or why not?